Skip to main content

Comparison of atomic scale dynamics for the middle and late transition metal nanocatalysts

Penelitian - Catalysis of chemical reactions by nanosized clusters of transition metals holds the key to the provision of sustainable energy and materials. However, the atomistic behaviour of nanocatalysts still remains largely unknown due to uncertainties associated with the highly labile metal nanoclusters changing their structure during the reaction.

“In this study, we reveal and explore reactions of nm-sized clusters of 14 technologically important metals in carbon nano test tubes using time-series imaging by atomically-resolved transmission electron microscopy (TEM), employing the electron beam simultaneously as an imaging tool and stimulus of the reactions,” said Kecheng Cao of the Ulm University and colleagues.

Penelitian Comparison of atomic scale dynamics for the middle and late transition metal nanocatalysts

Defect formation in nanotubes and growth of new structures promoted by metal nanoclusters enable the ranking of the different metals both in order of their bonding with carbon and their catalytic activity, showing significant variation across the Periodic Table of Elements. Metal nanoclusters exhibit complex dynamics shedding light on atomistic workings of nanocatalysts, with key features mirroring heterogeneous catalysis.



Journal : Kecheng Cao et al. Comparison of atomic scale dynamics for the middle and late transition metal nanocatalysts, Nature Communications, 23 August 2018, DOI:10.1038/s41467-018-05831-z

Comments

Popular

An Evolutionarily-conserved Wnt3/β-catenin/Sp5 Feedback Loop Restricts Head Organizer Activity in Hydra

Protein Antibeku dan Antileleh Ikan Notothenioid Antartika

Biofluoresensi Sinar Neon Umum di Dunia Ikan

Capit Udang Secepat Kilat Menciptakan Gelombang Kejut

Batu Mengisahkan Banjir Besar China dan Fajar Dinasti Xia 4000 Tahun Lalu